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Abstract

In this communication, we show that there is general construction to produce
non-evolutionary integrable equations from a given integrable evolutionary
equation. To support the main theorem, a few examples are explicitly given.
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1. Introduction

Recently, the authors of [1] applied Painlevé analysis to test the integrability of sixth-order
nonlinear wave equations of the form

uxxxxxx + auxuxxxx + buxxuxxx + cu2
xuxx + dutt + euxxxt + f uxuxt + gutuxx = 0, (1)

where a, b, c, d, e, f and g are arbitrary parameters. They found four distinct cases to pass
the Painlevé test. Three of these are previously known, and the fourth one is

(
D3

x + 8uxDx + 4uxx

)(
ut + uxxx + 6u2

x

) = 0, (2)

which corresponds to the parameter d = 0 in (1).
When the parameter d �= 0 in equation (1), using new notation ai for its parameters we

can rewrite it as

utt = a1uxxxxxx + a2uxuxxxx + a3uxxuxxx + a4u
2
xuxx + a5uxxxt + a6uxuxt + a7utuxx.

Classification of such partial differential equations of second order (in time) that possess a
hierarchy of infinitely many higher symmetries has been undertaken using the perturbative
symmetry approach in [2, 3]. All homogeneous integrable equations of fourth and sixth order
(in the space derivative) were listed out, and three new tenth-order integrable equations were
found.

Equation (2) has generated enormous interest [4–8] since the communication [1] was
posted on the arXiv. Kupershmidt [7] conjectured that nonholonomic perturbations for any
bi-Hamiltonian system preserve integrability. Soon, the authors of [9] proved the conjecture.

In this communication, we show that there is a general construction to produce non-
evolutionary integrable equations from a given integrable evolutionary equation. This
construction does not require the integrable equations to be bi-Hamiltonian. We tackle the
problem by answering the following question.
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Given an integrable evolutionary differential equation ut + K = 0, where K is a
smooth function of x, u and x-derivatives of u up to an arbitrary but finite order, are
there (pseudo)-differential operators Q such that the equation

Q(ut + K) = 0

is still integrable?

The answer is positive. In fact, there is more than one solution for operators Q. In this
communication, we prove that the factors of a Nijenhuis (see formula (12) for the definition)
recursion operator of ut + K = 0 are the possible operators Q. The precise statement is as
follows:

Theorem 1. Let � be a Nijenhuis recursion operator of the integrable evolutionary equation
ut + K = 0. Assume � = PQ, where P and Q are (pseudo)-differential operators (including
the case when P = 1). If P is non-degenerate, then

QPDQ�j (ut +K) − DQ�j (ut +K)� = 0, j = 0, 1, 2, . . . , (3)

for all solution of Q�j (ut + K) = 0, where D� is the Fréchet derivative of �.

Here we should be careful about drawing a conclusion from (3) that � is a recursion
operator of the equation Q�j (ut + K) = 0 for j = 0, 1, 2, . . . , due to the nonlocal aspect of
operators � and QP . More discussions on this can be found in the following section.

Consider the potential Korteweg–de Vries (PKdV) equation,

ut + uxxx + 6u2
x = 0. (4)

It possesses a Nijenhuis recursion operator:

�PKdV = D−1
x

(
D3

x + 8uxDx + 4uxx

)
,

where D−1
x stands for the left inverse of Dx and HPKdV = D−1

x is a Hamiltonian operator, and
�PKdV = D3

x + 8uxDx + 4uxx is a symplectic operators. Equation (2) is obtained by �PKdV

acting on the PKdV equation. Since both �PKdV and �H are weakly nonlocal, it follows from
the above theorem that equation (2) is integrable and possesses the same recursion operator as
the PKdV equation as noted in [1].

In the same spirit, the following equations are integrable:

Dxu
−1
x Dx

(
ut + uxxx − 3

2u−1
x u2

xx

) = 0,

(Dx ± 2u)(ut + uxxx − 6u2ux) = 0,(
D2

x + ux

) (
ut + uxxxxx + 5uxuxxx + 5

3u3
x

) = 0,
(
D5

x + 5
(
uxD

3
x + D3

xux

) − 3(uxxxDx + Dxuxxx) + 8
(
u2

xDx + Dxu
2
x

))
(ut + ux) = 0.

We refer to section 3 for further details and more examples.

2. The proof of the theorem

In this section, we give the proof of theorem 1. First we introduce some basic concepts based
on the book [10].

Consider (1 + 1)-dimensional differential equations with x, t being independent variables
and u being a finite dimensional vector valued dependent variable

�[u] = 0, (5)
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where [u] means that the vector-valued smooth function � depends on u and its
derivatives.

Definition 1. An evolutionary vector field with characteristic S[u] is a symmetry of system (5)
if and only if

D�[S] = 0, (6)

where D� is the Fréchet derivative of �.

The dual objects for symmetries are called cosymmetries. If Q[u] is a cosymmetry of
equation (5), it satisfies

D�
�(Q) = 0, (7)

where D�
� is the conjugate of the differential operator D�.

Let E denote the Euler operator. For any cosymmetry Q[u] of equation (5), we have

E(Q · �) = D�
Q(�) + D�

�(Q) = 0.

Hence there exist F [u] and G[u] such that

Q · � = DtF + DxG. (8)

Here F is called the conserved density and G is called the conserved flux. This is the
characteristic form of a conservation law. Thus Q[u] is also called the characteristic of a
conservation law [10].

In this communication, system (5) is said to be integrable if it possesses infinitely many
independent higher-order symmetries.

Often these symmetries can be generated by a recursion operator [11], which is a linear
operator � mapping a symmetry to a new symmetry. It satisfies

D�� = �̃D� (9)

for all solutions of the equation, where �̃ is a linear operator. Suppose that

�[u] = ut − K(x, u, ux, uxx, . . . , uxx...x) = 0 (10)

is an evolutionary differential equation. Then �̃ = � and condition (9) reduces to

D�[K] = [DK,�]. (11)

In some literature, formula (11) is taken as the definition of the recursion operator for evolution
equation (10). However, we cannot take formula (9) as the definition for equation (5) unless
we put constraints on the nonlocality of operator �̃. Otherwise, we can always find �̃ formally
and this leads to a wrong conclusion: every operator is a recursion operator! In the case where
� is a weakly nonlocal differential operator [12], operator �̃ should also be weakly nonlocal.
Here we refer to [13, 14] for another view of recursion operators, which are interpreted as
Bäcklund autotransformations for the linearized equations.

All known recursion operators for nonlinear integrable equations are Nijenhuis operators,
that is, for all evolutionary vector field with characteristic S[u] operator � satisfies

D�[�S] − [D�S,�] = �(D�[S] − [DS,�]). (12)

Hence if the Nijenhuis operator � is a recursion operator of ut = K , then � is a recursion
operator for each of the evolution equations in the hierarchy ut = �kK , for k = 0, 1, 2, . . ..

Interrelations among Hamiltonian and symplectic operators, and Nijenhuis operators were
discovered by Gel’fand and Dorfman [15] and Fuchssteiner and Fokas [16, 17]. We refer to
[18] for more details. Here we point out the relation between the recursion operator and
Hamiltonian, and symplectic operators for equation (5).
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We say that a Hamiltonian operator H mapping cosymmetries to symmetries of
equation (5) is its Hamiltonian operator. It satisfies

D�H = H̃D�
� (13)

for all solutions of the equation, where H̃ is a linear operator. Similarly, we can define a
symplectic operator of equation (5), which satisfies

D�
�� = �̃D�. (14)

From the above formulae (13) and (14), we see that H� is a recursion operator satisfying
formula (9) with �̃ = H̃�̃.

To prove theorem 1, it requires the following lemma.

Lemma 1. Let � be a Nijenhuis recursion operator of an integrable evolutionary equation
ut + K = 0. Then

�D�j (ut +K)[S] − D�j (ut +K)[�S] + D�[�j (ut + K)]S = 0, f or j = 0, 1, 2, . . . . (15)

Proof. Since � is a recursion operator of ut + K = 0, this implies that

D(ut +K)� − �D(ut +K) = D�[ut + K].

This is identity (15) for j = 0. Now we prove it for all j > 0 by induction. Assume formula
(15) is valid for j and we compute

�D�j+1(ut +K)[S] − D�j+1(ut +K)[�S]

= �2D�j (ut +K)[S] + �D�[S]�j (ut + K) − �D�j (ut +K)[�S] − D�[�S]�j (ut + K)

= �(�D�j (ut +K)[S] − D�j (ut +K)[�S]) + (�D�[S] − D�[�S])�j (ut + K). (16)

Since � is a Nijenhuis operator, we know

�D�[S] − D�[�S] = �([DS,�]) − [D�S,�] = �DS� − �2DS − D�S� + �D�S.

This leads to

(�D�[S] − D�[�S])�j (ut + K) = �D�[�j (ut + K)]S − D�[�j+1(ut + K)](S).

Therefore, (16) becomes

�(�D�j (ut +K)[S] − D�j (ut +K)[�S] + D�[�j (ut + K)]S) − D�[�j+1(ut + K)](S),

which is equivalent to

�D�j+1(ut +K)[S] − D�j+1(ut +K)[�S] + D�[�j+1(ut + K)](S)

= �(�D�j (ut +K)[S] − D�j (ut +K)[�S] + D�[�j (ut + K)]S).

Using the induction assumption, we proved the identity. �

Proof of theorem 1. Note that for all solutions of Q�j (ut + K) = 0 and any evolutionary
vector field with characteristic S we have

D�j+1(ut +K)[S] = DP [S](Q�j (ut + K)) + PDQ�j (ut +K)[S] = PDQ�j (ut +K)[S].

Thus using lemma 1, we obtain

P(QPDQ�j (ut +K)[S] − DQ�j (ut +K)[�S])

= �PDQ�j (ut +K)[S] − PDQ�j (ut +K)[�S]

= �D�j+1(ut +K)[S] − D�j+1(ut +K)[�S] = −D�[�j+1(ut + K)](S) = 0.

Due to non-degeneracy of operator P , we obtain formula (3) and hence the statement is
proved. �
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The majority of known recursion operators � for evolutionary equations can be written
as the products of weakly nonlocal operators [19]. In this case, we can draw the following
conclusion from formula (3):

Corollary 1. Under the conditions of theorem 1, if both P and Q are weakly nonlocal, then
� is a recursion operator of the equation Q�j (ut + K) = 0 for j = 0, 1, 2, . . ..

Now we compute the conjugation of formula (3) and we have

��D�
Q�j (ut +K) − D�

Q�j (ut +K)P
�Q� = 0. (17)

Note that if Q is a cosymmetry of Q�j (ut + K) = 0, so is P�Q�Q if it is local. So operator
P�Q� mapping its cosymmetry to a new cosymmetry.

The cosymmetries of the extended integrable equation Q�j (ut + K) = 0 are closely
related to those of the equation ut + K = 0.

Corollary 2. Under the conditions of theorem 1, if Q is a cosymmetry of Q�j (ut + K) = 0,
then �j�Q�Q is a cosymmetry of ut + K = 0. If �(j+1)�Q̄ is a cosymmetry of ut + K = 0,
then P�Q̄ is a cosymmetry of Q�j (ut + K) = 0.

Proof. Let E be the Euler operator and Q be a cosymmetry of Q�j (ut + K) = 0. We have

0 = E(Q · Q�j (ut + K)) = E(�j�Q�Q · (ut + K)),

that is, �j�Q�Q is a cosymmetry of ut + K = 0. On the other hand, let �(j+1)�Q̄ be a
cosymmetry for the equation ut + K = 0, that is,

0 = E(�(j+1)�Q̄ · (ut + K)) = E(�j�Q�P�Q̄ · (ut + K)) = E(P�Q̄ · Q�j (ut + K)).

This implies that P�Q̄ is a cosymmetry of Q�j (ut + K) = 0. �

In our first example, we know uxx is a cosymmetry of the PKdV equation (4). Then −ux

is a cosymmetry of equation (2). Indeed,

−ux · (
D3

x + 8uxDx + 4uxx

)(
ut + uxxx + 6u2

x

)

= Dt

(
1
2u2

xx − 2u3
x

)
+ Dx

( − uxuxxt − 2u2
xut − uxu5x + uxxu4x − 1

2u2
3x − 20u2

xu3x − 30u4
x

)
.

Equation (2) can be written in the conserved form as
(
D3

x + 8uxDx + 4uxx

)(
ut + uxxx + 6u2

x

)

= Dt

(
2u2

x

)
+ Dx

(
D2

x

(
ut + uxxx + 6u2

x

)
+ 4uxut + 8uxuxxx − 2u2

xx + 40u3
x

)
.

This implies 1 is a cosymmetry of equation (2), which corresponds to a cosymmetry −4uxx

for the PKdV equation (4).

3. More examples

In this section, we list a few scalar integrable equations obtained using theorem 1 when
� = PQ is weakly nonlocal and operator Q is local. It follows from corollary 1 that operator
� is a recursion operator of the equations obtained.
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3.1. The potential Burgers’ equation

Consider the potential Burgers’ equation ut + uxx + u2
x = 0 with a Nijenhuis recursion operator

� = Dx + ux.

Its hierarchy of commuting local symmetries is give by �jux for j = 0, 1, 2, . . .. The
flows given by any linear combinations of such symmetries, i.e., ut = K = ∑n

i=1 �ji ux are
integrable and share the same recursion operator �. It follows from theorem 1 that

(Dx + ux)
l(ut + K) = 0, K =

n∑

i=1

λi�ji ux, (18)

for all l = 0, 1, 2, . . ., and constants λi are integrable sharing the same recursion operator �.
Due to formula (3) and the linearity of Fréchet derivative, any linear combinations of extended
equations (18) are also integrable. As pointed out in [20], there is a two-fold integrable
hierarchy for equation (2). Here the freedom of both l and j reflects the same fact for the
extended integrable potential Burgers’ equation.

Indeed, by the Cole–Hopf transformation w = exp(u), we can linearize equation (18). In
particular, the equation (Dx + ux)(ut + ux) = 0 can be transformed into wxt + wxx = 0.

3.2. The Schwarzian Korteweg–de Vries equation

The Schwarzian Korteweg–de Vries equation, ut + uxxx − 3
2u−1

x u2
xx = 0, possesses a Nijenhuis

recursion operator � = H�, where H = uxD
−1
x ux and

� = u−2
x D3

x − 3u−3
x uxxD

2
x +

(
3u−4

x u2
xx − u−3

x uxxx

)
Dx = Dxu

−1
x Dxu

−1
x Dx.

We can obtain infinitely many integrable non-evolutionary equations as in the previous section
via a local operator �. A typical example is

�(
ut + uxxx − 3

2u−1
x u2

xx

) = 0.

Since operator � can be factorized into local operators, we can also obtain integrable non-
evolutionary equations via its factors. Therefore, the equation

Dxu
−1
x Dx

(
ut + uxxx − 3

2u−1
x u2

xx

) = 0

is also integrable.

3.3. The modified Korteweg–de Vries equation

The modified Korteweg–de Vries equation, ut + uxxx − 6u2ux = 0, possesses a Nijenhuis
recursion operator:

� = D2
x − 4u2 − 4uxD

−1
x u = Dx

(
Dx − 4uD−1

x u
)

= Dx(Dx − 2u)D−1
x (Dx + 2u) = Dx(Dx + 2u)D−1

x (Dx − 2u).

Similar to sections 3.1 and 3.2, we can extend it to non-evolutionary integrable equations. One
example is

(Dx ± 2u)(ut + uxxx − 6u2ux) = 0.

6
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3.4. The potential Sawada–Kotera equation

The potential Sawada–Kotera equation, ut + uxxxxx + 5uxuxxx + 5
3u3

x = 0, possesses a
Nijenhuis recursion operator � = H�, where

H = Dx + 2uxD
−1
x + 2D−1

x ux and � = (
D2

x + ux

)
Dx

(
D2

x + ux

)
.

Typical integrable examples are

�(
ut + uxxxxx + 5uxuxxx + 5

3u3
x

) = 0, (19)

(
D2

x + ux

)(
ut + uxxxxx + 5uxuxxx + 5

3u3
x

) = 0. (20)

3.5. The potential Kaup–Kupershmidt equation

The potential Kaup–Kupershmidt equation,

ut + uxxxxx + 10uxuxxx + 15
2 u2

xx + 20
3 u3

x = 0,

possesses a Nijenhuis recursion operator � = H�, where H = Dx + uxD
−1
x + D−1

x ux and

� = D5
x + 5

(
uxD

3
x + D3

xux

) − 3(uxxxDx + Dxuxxx) + 8
(
u2

xDx + Dxu
2
x

)
.

According to theorem 1, we can extend infinitely many integrable non-evolutionary equations.
Typical examples are

�(ut + ux) = 0, (21)

�(
ut + uxxxxx + 5uxuxxx + 5

3u3
x

) = 0. (22)

Equation (21) is equivalent to system (2.14) in [21] under simple scaling transformation. Thus
it has a reciprocal link to the Degasperis–Procesi equation:

ut − uxxt + 4uux = 3uxuxx + uuxxx.

4. Conclusion and further research

In this communication, we give a general construction to extend from integrable evolutionary
equations to integrable non-evolutionary equations. There are potential applications of such a
construction. In general, it is much harder to study the algebraic and geometric structures of
integrable non-evolutionary equations. For a given such equation, it is advisable to transform
it into the form Q(ut + K) = 0. More research will be undertaken in this direction.

For non-evolutionary equations, it is convenient to have formula (9) to determine whether
a given operator is a recursion operator or not. Due to the nonlocality of recursion operators
�, we need to check whether it maps a symmetry to a new symmetry. This is equivalent
to adding the constraints on operator �̃. In this communication, we applied theorem 1 for
recursion operators being the products of weakly nonlocal operators. For a given evolutionary
equation, this theorem can be applied for a given recursion operator of other types.

Under the construction, the extended non-evolutionary equations share the same recursion
operator. But their solutions are different since the kernels of the differential operators involved
are different; see equations (19) and (20). It would be interesting to see how the properties
such as Lax representations and solutions of such equations are related.

Due to the nonlocality, the factorization of Nijenhuis operators is an unsolved problem.
For a given operator, we can try to represent it as a product of lower-order operators in the

7
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same spirit for linear differential operators [22]. For the Nijenhuis operator � = PQ, we do
not require Hamiltonian and symplectic properties for operators P and Q. In fact, operator
P has the property that [PF,PG] ∈ ImP for any F [u] and G[u]. This can be viewed as
the generalization of Hamiltonian operators [23–25]. We are going to study the properties of
operators P and Q, and their interrelation with Nijenhuis operators, which is helpful for the
factorization of the Nijenhuis operators. Some results have been obtained in this direction and
will be published in the future.
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